Resolving Inflammation with SPMs
Resolving Inflammation with SPMs
Chronic inflammatory diseases have reached epidemic levels in industrialised countries. According to the 2014-2015 National Health Survey, half of all Australians live with a chronic inflammatory disease such as asthma, cardiovascular disease, diabetes mellitus, obesity, arthritis, Alzheimer’s disease, autoimmune disease, and cancer.4, 5, 6
It was long assumed that an acute inflammatory process was passively self-limiting, with chemotactic factors (substances that stimulate the migration of inflammatory cytokines) simply diluting or draining away.7 However this is not the case, evidenced by the development of chronic inflammatory conditions, where inflammatory mediators persist at a site, and the resolution of the inflammatory process failing to engage.8
It is now known that the resolution of inflammation is an active process, controlled by a family of chemicals known as specialised pro-resolving mediators (SPMs).9 SPMs promote inflammation resolution, reduce pain, encourage the clearance of pathogens and mitigate pathological inflammation, without immunosuppression. Together, these qualities make SPMs an important consideration for the treatment of chronic, unremitting inflammatory conditions.
SPMs are derivatives of omega-3 essential fatty acids (EFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). They are produced during the resolution phase of an acute inflammatory response, working to switch off the inflammatory process.10, 11 Several classes of SPMs are derived from EFAs, including resolvins (e.g. RvE, RvD1), protectins (e.g. PD1), and maresins (e.g.MaR1, HDHA).12 Lipoxins, another class of SPMs, are produced from the omega-6 fatty acid, arachidonic acid.
Inflammation, initiated
At the genesis of these inflammatory states is an initial insult, such as a tissue injury, infection, or exposure to an allergen or toxin, which activates the acute inflammatory response.13, 14 Here, an influx of poly-morpho-nuclear neutrophils (PMNs) enter the affected site and produce inflammatory mediators (e.g. cytokines, chemokines and eicosanoids) needed to trigger tissue repair. PMNs also phagocytose pathogens, and finally themselves undergo apoptosis,15, 16 causing inflammation and tissue damage, which must be cleared by macrophages in a process known as efferocytosis. Clearing this cellular debris enacts the resolution of the inflammatory process,17 allowing the body to once again return to homeostasis.
SPMs: inflammation stop signs
Entering this stage of inflammatory resolution relies on the synthesis of SPMs, which reduce PMN infiltration and increase efferocytosis.18 SPMs also achieve resolution via the regulation of macrophage polarisation. Macrophages exist in two broad phenotypes; M1 macrophages, which are pro-inflammatory, and M2 macrophages, which synthesise SMPs, inhibit PMNs, and promote efferocytosis, tissue repair, and resolution. SPMs trigger the macrophage switch from the M1 to the M2 phenotype, thereby promoting resolution.19
Additionally, SPMs have specific anti-inflammatory mechanisms, decreasing pro-inflammatory and increasing anti-inflammatory mediator production.20 In animal models, resolvins demonstrate the ability to reduce the production of pro-inflammatory eicosanoids and cytokines such as prostaglandin E2 (PGE2), leukotriene B4 (LTB4), interleukin-1β (IL-1β), IL-17 and IL-6.21, 22
Resolvins have also been shown to inhibit tumour necrosis factor alpha (TNF-α) activation in vitro and in animal models.23 SPMs also counter-regulate inflammatory gene transcription, and increase the clearance of inflammatory mediators by up-regulating chemokine binding receptors on T cells and PMNs, which are then phagocytosed by macrophages.24
However, in patients experiencing chronic inflammatory conditions, SPM production can be compromised,25 preventing the resolution of their condition. Supporting their presentation with Specialised Pro-Resolving Mediators will therefore provide the body with the capacity to work toward resolution of their inflammation.
Reduce the pain too, please
Additionally, SPMs also carry standalone analgesic properties. Shown to influence signalling within the brain, the resolvin RvE1 has demonstrated capacity to inhibit glutamate release and N-methyl-D-aspartate (NMDA) receptor hyperactivity, both important targets for pain relief.26
Exhibited further in animal models of inflammatory pain, resolvins have reduced pain-associated behaviours, and produced comparable pain-relieving effects to the pharmaceutical medication pregabalin.28 Whilst reducing inflammation can also provide pain relief, these additional analgesic effects of SPMs will be of particular benefit for those patients experiencing concomitant chronic pain.
The many patients of SPMs
Given their pro-resolving and anti-inflammatory actions, SPMs are indicated in any condition involving chronic, unremitting inflammation. One such example commonly presenting in clinical practice is arthritis, with the crucial role of SPMs in this condition demonstrated in several human and animal studies.29, 30, 31, 32 Beyond this, Table 1 explores further evidence-based applications of SPMs in a varying range of inflammatory conditions.
Table 1. Overview of emerging research and applications for SPMs.
Condition | SPM mediator studied | Research outcomes |
Allergies | RvD1 and 17-HDHA | Inhibited immunoglobulin E (IgE) production and suppressed differentiation of naïve B cells into IgE secreting cells in vitro.33 |